Data driven reduced modelling of the Vlasov-Poisson equation E. Franck^{1,2}, L. Navoret^{1,2}, G. Steimer^{1,2}, and V. Vigon² ¹ Université de Strasbourg, CNRS, Inria, IRMA, F-67000 Strasbourg, France ²IRMA, Université de Strasbourg, CNRS UMR 7501, 7 rue René Descartes, 67084 Strasbourg, France, emmanuel. franck@inria. fr-laurent.navoret@unistra. fr-guillaume. steimer@inria. fr-vincent.vigon@math.unistra. fr-vincent.vigon.vigon.vigon.vigon.vigon.vigon.vigon.vigon.vigon.vigon.vigon.vigon.vigon.vigon.vigon.vi Keywords: Deep Learning, Hamiltonian systems, Model Order Reduction Nowadays, deep learning neural networks are widely deployed and they flourish in many fields of applications. We propose to use them to develop a new Model Order Reduction (MOR) technique for kinetics models. It will be elaborated on the Vlasov-Poisson model. Indeed, this model describes the evolution of a charged particle distribution submitted to an electromagnetic field. The latter may be self-consistent, i.e. generated by the above-mentioned distribution. In consequence dynamics can be strongly non-linear. There exists symplectic POD (Proper Orthogonal Decomposition) methods for parametric MOR in the self-consistent case [2]. It achieves to preserve the Hamiltonian structure of the model. Nonetheless, this approach seems insufficient in strongly non-linear cases. We propose a new, efficient and scalable process based on neural networks to reduce the ODE derived from Vlasov and learn a reduced model with a preserved Hamiltonian structure. We use Hamiltonian neural networks [4] conjointly with autoencoders neural networks [1]. The latter is being used for MOR as in [3] however we rely on coupled learning for both networks and well-chosen learning constraints to ensure an adequate reduction with good stability properties. ## References - [1] N. K. Dor Bank and R. Giryes. Autoencoders. 2020. - [2] C. P. Jan S. Hesthaven and N. Ripamonti. Adaptive symplectic model order reduction of parametric particle-based vlasov-poisson equation. 2022. - [3] P. B. Romit Maulik, Bethany Lusch. Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders. 2020. - [4] M. D. Sam Greydanus and J. Yosinski. Hamiltonian Neural Networks. 2019.