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Nowadays, deep learning neural networks are widely deployed and they flourish in many fields of
applications. We propose to use them to develop a new Model Order Reduction (MOR) technique for
kinetics models. It will be elaborated on the Vlasov-Poisson model. Indeed, this model describes the
evolution of a charged particle distribution submitted to an electromagnetic field. The latter may be
self-consistent, i.e. generated by the above-mentioned distribution. In consequence dynamics can be
strongly non-linear.
There exists symplectic POD (Proper Orthogonal Decomposition) methods for parametric MOR in the
self-consistent case [2]. It achieves to preserve the Hamiltonian structure of the model. Nonetheless,
this approach seems insufficient in strongly non-linear cases. We propose a new, efficient and scalable
process based on neural networks to reduce the ODE derived from Vlasov and learn a reduced model
with a preserved Hamiltonian structure. We use Hamiltonian neural networks [4] conjointly with
autoencoders neural networks [1]. The latter is being used for MOR as in [3] however we rely on coupled
learning for both networks and well-chosen learning constraints to ensure an adequate reduction with
good stability properties.
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