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Sparsity of nonlinear dynamical models extracted from data is an attractive feature for the numerical
efficiency of surrogate models as well as for the inference of interpretable governing laws from obser-
vations. Symbolic regression approaches like Sparse Identification of Nonlinear Dynamics (SINDy) [1]
solve a data-fitting problem such as
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for coefficients ξj for a potentially huge library of n atoms fj , subject to some sparsity-enhancing
constraint or penalization such as the Least Absolute Shrinkage and Selection Operator [4] leading to
a `1 constraint ‖ξ‖1 ≤ α.
A large variety of methods are available for solving the resulting optimization problem. We propose
the efficient first-order Conditional Gradient [3] algorithm CINDy (named as an hommage to SINDy)
for its solution [2]. In comparison to the most prominent alternative algorithms, the new algorithm
shows significantly improved performance on several essential issues like sparsity induction, structure
preservation, noise robustness, sample efficiency, and predictive power. We demonstrate these advan-
tages on several dynamics from the field of synchronization (Fig. 1), particle dynamics, and enzyme
chemistry.
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Figure 1: Trajectory comparison of a Kuamoto model identified with SINDy and CINDy.
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