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Deep Operator Networks (DeepONets) [2] offer a powerful, data-driven tool for solving parametric
PDEs by learning operators, i.e. maps between infinite-dimensional function spaces. Recently pro-
posed physics-informed versions have made use of governing law residuals in the loss function in order
to significantly reduce requirements for expensive, labeled training data (i.e. input-output pairs), as
well as to improve predictive accuracy under extrapolative conditions [3]. In this work, we employ
physics-informed DeepONets in the context of high-dimensional, Bayesian inverse problems. Tradi-
tional solution strategies necessitate an enormous, and frequently infeasible, number of forward model
solves, as well as the computation of parametric derivatives. In order to enable efficient solutions,
we extend DeepONets by employing a realNVP architecture [1] which yields an invertible and differ-
entiable map between the parametric input and the branch net output. This allows us to construct
accurate approximations of the full posterior which can be readily adapted irrespective of the number
of observations and the magnitude of the observation noise. As a result, no additional forward solves
are required, nor is there any need for costly sampling procedures. We demonstrate the efficacy and
accuracy of the proposed methodology in the context of inverse problems based on a reaction-diffusion
and a Darcy-flow equation.
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