Probabilistic reduced basis method for parameter-dependent problems

<u>M. Billaud-Friess</u>¹, A.Macherey^{1,2}, A. Nouy¹, and C. Prieur²

¹Nantes Université, Centrale Nantes, LMJL, UMR CNRS 6629, France ²Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38 000 Grenoble, France

In this talk, we consider the approximation of some function $u : \xi \mapsto u(\xi)$, defined on $\Xi \subset \mathbb{R}^p$ and taking its values in some vector space V, by means of a Reduced Basis (RB) method. It aims at constructing an approximation $u_n(\xi)$ of $u(\xi)$ as a projection in a finite dimensional space $V_n \subset V$ generated by snapshots of u selected through a greedy procedure. A practical algorithm is as follows. Given $\{\xi_1, \ldots, \xi_{n-1}\}$ and the corresponding subspace $V_{n-1} = \text{span}\{u(\xi_1), \ldots, u(\xi_{n-1})\}$, a new parameter value ξ_n is selected as

$$\xi_n \in \arg\max_{\xi \in \tilde{\Xi}} \Delta(u_n(\xi), \xi), \tag{1}$$

with $\Delta(u_n(\xi),\xi)$ a suitable error estimate and $\tilde{\Xi} \subset \Xi$ a finite training set. Recently, probabilistic variants of this algorithm have been considered. In [4], different training sets $\tilde{\Xi} = \Xi_n$ randomly chosen are used at each step. In [2, 3], a control variate using a RB paradigm has been proposed where $\Delta(u_n(\xi),\xi)$ is a Monte Carlo estimate of the variance of the projection error. In the lines of [2, 3], we propose a probabilistic greedy algorithm in which $\Delta(u_n(\xi),\xi)$ is expressed as the expectation of a parameter-dependent random variable $Z_n(\xi)$, i.e.

$$\Delta(u_n(\xi),\xi) = \mathbb{E}(Z_n(\xi)). \tag{2}$$

To solve (1) with (2), a Probably Approximately Correct bandit algorithm [1] is retained. It returns a quasi-optimum in relative precision, with high probability. The resulting greedy algorithm is proven to be a weak greedy algorithm with high probability.

Applications concern the approximation of $u(\xi) : D \to \mathbb{R}$, $D \subset \mathbb{R}^d$, for which we only have access to pointwise evaluations at $(x,\xi) \in D \times \Xi$. For u a costly functional given a priori, the proposed method is applied to compute u_n an interpolant of u in V_n . In that case, it can be seen as a probabilistic empirical interpolation method. Then, we consider a probabilistic RB method for the solution of parameter-dependent partial differential equations on D. Here, as u is not explicitly given, the proposed method relies on pointwise estimates $u(x,\xi)$ obtained through the so-called *Feynman-Kac representation formula*.

References

- M. Billaud-Friess, A. Macherey, A. Nouy, and C. Prieur. A PAC algorithm in relative precision for bandit problem with costly sampling. arXiv:2007.15331, Jul 2020, (to appear in Math. Methods Oper. Res).
- [2] M.-R. Blel, V. Ehrlacher, and T. Lelièvre. Influence of sampling on the convergence rates of greedy algorithms for parameter-dependent random variables. *arXiv:2105.14091*, May 2021.
- [3] S. Boyaval and T. Lelièvre. A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm. *Commun. Math. Sci.*, 8(3):735–762, Sep 2010.
- [4] A. Cohen, W. Dahmen, R. DeVore, and J. Nichols. Reduced basis greedy selection using random training sets. *ESAIM: Mathematical Modelling and Numerical Analysis*, 54(5):1509–1524, 2020.