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Differential geometric formulations are central in multiple classes of dynamical systems like e.g. La-
grangian systems. In classical Model Order Reduction (MOR) these underlying differential geometric
formulations are typically not reflected. This becomes especially problematic for recent MOR ap-
proaches which use nonlinear techniques to approximate the state [1, 2, 3] (in the following referred
to as MOR on manifolds) since inconsistent projections of the full-order model might be used, see [2,
Remark 3.5 (Alternative Galerkin projection)]. In this work, we present how MOR (on manifolds)
can be formulated for basic differential geometric objects like vector fields and covector fields. This
rigorous formulation has the advantage that it clearly shows how to project the full-order system and
thereby inherently prevents inconsistent projections. Sparked by the insights of the new differential
geometric formulation, we discuss extensions to the training of nonlinear autoencoders (d(·,θ), e(·,θ))
based on a dataset X := {xi}ns

i=1 ⊂ RN

d(·,θ) : Rn → RN ,

e(·,θ) : RN → Rn,
choose θ ∈ Rnp such that (d(·,θ) ◦ e(·,θ))(xi) ≈ xi for 1 ≤ i ≤ ns.

These extensions include two ideas: (i) The modification for exact reproduction of initial values from
[2, Section 5.3] is adopted in the formalism and respected in the training procedure. This guarantees
that the same coordinates are used in the training and the evaluation of the autoencoder and results
in a modified loss function

LD(θ) :=

ns∑
i=1

‖(d(·,θ) ◦ e(·,θ))(xi)− (d(·,θ) ◦ e(·,θ))(0)− xi‖2 . (1)

As a second extension, (ii) snapshots of the right-hand side Xf := {fi}ns
i=1 are included in the training

by introducing an additional loss function

Lf (θ) :=
ns∑
i=1

∥∥∥(IN −Dx(d(·,θ) ◦ e(·,θ))
∣∣
xi

)
fi

∥∥∥2 . (2)

Appropriate balancing of the both losses, (1) and (2), is discussed. In the numerical experiment, we
consider the reduction of the one-dimensional Burgers’ equation via a so-called deep convolutional
autoencoder from [2] and investigate how the suggested extensions can improve the approximation
quality.

References

[1] S. Fresca, L. Dedé, and A. Manzoni. A Comprehensive Deep Learning-Based Approach to Re-
duced Order Modeling of Nonlinear Time-Dependent Parametrized PDEs. Journal of Scientific
Computing, 87(2):61, Apr. 2021.

[2] K. Lee and K. T. Carlberg. Model reduction of dynamical systems on nonlinear manifolds using
deep convolutional autoencoders. Journal of Computational Physics, 404:108973, 2020.

[3] M. Ohlberger and S. Rave. Nonlinear reduced basis approximation of parameterized evolution
equations via the method of freezing. Comptes Rendus Mathematique, 351(23):901–906, 2013.


