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The determination of low-dimensional collective variables (CVs) is a critical problem in various appli-
cation areas, including molecular dynamics simulations. However, finding good CVs, for example in
the sense of retaining slow dynamical time scales of the full system, is highly non-trivial and requires
the use of state-of-the art data analysis techniques.
In this talk, I will present recent theoretical and algorithmic progress on the determination of CVs and
their associated effective dynamics using the projection formalism for stochastic dynamics as developed
by Legoll and Lelièvre in [2]. In [6], it was shown that the projection formalism amounts to applying
an orthogonal projection to the Koopman generator of the full system. The generator is projected
onto the (still infinite-dimensional) space of functions which only depend on the CV space. The first
result I will show is an error estimate comparing the slow time scales of the projected system to those
of the full one. We arrive at a Galerkin-type estimate, bounding the time scale error in terms of the
projection error for dominant eigenfunctions [4].
Then, I will move on to show how a data-driven matrix approximation of the projected generator can
be obtained by a technique called generator extended dynamic mode decomposition (gEDMD) [1].
This method can also be formulated if a tensor product basis is used as Galerkin subspace [3], enabling
the use of rich approximation spaces and potentially high-dimensional CVs. Finally, I will discuss
bounds for the estimation error of the gEDMD method in terms of the amount of simulation data used
to learn the Koopman generator [5].
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