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We present a novel physics-informed system identification method to construct a passive linear time-
invariant system. In more detail, for a given quadratic energy functional, measurements of the input,
state, and output of a system in the time domain, we find a realization that approximates the data
well while guaranteeing that the energy functional satisfies a dissipation inequality. One of the main
advantages of requiring the learned model to satisfy a dissipation inequality is that whenever the
model is coupled with another passive model via a powerconserving or dissipative interconnection,
then the coupled model is also passive. To this end, we use the framework of port-Hamiltonian (pH)
systems [5] and modify the dynamic mode decomposition (DMD) [3] to be feasible for continuous-
time pH systems. We propose an iterative numerical method, to solve the corresponding least-squares
minimization problem of the form

min
∥∥∥Z − (J̃ − R̃)T

∥∥∥
F

s. t. J̃ = −J̃ T and R̃ � 0, (1)

where Z and T correspond to the discrete-time data and J̃ and R̃ to the matrices of the continuous-time
pH system. The proposed method divides the original problem into two subproblems, by alternately
fixing J̃ respectively R̃ and optimizing solely over the remaining matrix. The resulting subproblems
are a skew-symmetric and a symmetric positive semi-definite Procrustes problem. The skew-symmetric
Procrustes problem can be solved analytically [1] and algorithmic solutions are available for the sym-
metric positive semi-definite Procrustes problem [2]. We present a modification of the proposed Fast
Gradient Method, based on [4], with which it is possible to use the solution of the skew-symmetric
Procrustes problem iteratively. For an effective initialization we analyze the least-squares problem in
a weighted norm,

min
∥∥∥T TZ − T T (J̃ − R̃)T

∥∥∥
F

s.t. J̃ = −J̃ T and R̃ � 0, (2)

for which we present the analytical minimum-norm solution. The efficiency of the proposed method is
demonstrated with several numerical examples.
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