Tensor Galerkin Proper Orthogonal Decomposition for Uncertainty Quantification of PDEs with Random Parameters

P. Benner1,2 and J. Heiland1,2

1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
2Faculty of Mathematics, Otto von Guericke University Magdeburg, Germany

The statistically sound treatment of modelled uncertainties in simulations comes with significant additional computational costs. Since a deterministic model can already be arbitrarily complex, running statistics for general problems may soon become infeasible unless some kind of model reduction is involved.

In this talk, we present a multidimensional Galerkin Proper Orthogonal Decomposition (POD) that simultaneously reduces the physical dimensions of the model and the dimensions related to the uncertainties; see \cite{heiland2020} for details.

Using basic tensor calculus we extend our recent work of space-time Galerkin POD \cite{baumann2018} to arbitrary dimensions and apply it to PDEs with multivariate uncertainties. By means of a numerical example we illustrate the procedure, how it outperforms POD based on random snapshots and how it compares to statistics informed greedy sampling strategies as proposed in \cite{chen2013}.

Figure 1: Illustration of the state of an example convection-diffusion simulation and the spatially distributed error in the expected value of the solution under a multivariate uncertainty in the diffusion parameter.

References

