Interpolatory (P)MOR via low-rank (tensor) approximation in general linear matrix equations

J. Saak1 and H. Al Daas2

1Computation Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems
2Scientific Computing Department, STFC-Rutherford Appleton Laboratory

It is a well known fact that interpolation of the transfer function
\[H(s) = C(sE - A)^{-1}B \] (1)
in certain points \(s_j = i\omega_j \in i\mathbb{R} \), in projection-based model order reduction, can be achieved via projection to rational Krylov subspaces \([1]\). Further it has been shown that the solutions \(X \) and \(Y \) of the Sylvester equations
\[-AX + EXS = BL, \] (2)
\[-A^TY + E^TYS = C^TL, \] (3)
with the spectrum of \(S \) equal to the set of all \(s_j \), span these exact Krylov subspaces, as long as none of the \(s_j \) is a pole of \(H \) and \((S, L)\) is controllable. It is a well observed fact that the low rank of the right hand sides often transfers to a low (numerical) rank of the solutions \(X \) and \(Y \). This is especially true when many interpolation points are used, i.e. \(S \) gets large. Our solvers aim to exploit this fact to automatically decide about the reduced orders after massive oversampling.

When \(H \) additionally depends on parameters, i.e. there are parameter dependencies in \(E, A, B \), or \(C \), we derive tensor versions of (2), (3) and suggest low-rank tensor solvers to compute the truncation matrices.

References