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It is a well known fact that interpolation of the transfer function

H(s) = C(sE −A)−1B (1)

in certain points sj = iωj ∈ iR, in projection-based model order reduction, can be achieved via
projection to rational Krylov subspaces [1]. Further it has been shown that the solutions X and Y of
the Sylvester equations

−AX + EXS = BL, (2)

−ATY + ETY S = CTL, (3)

with the spectrum of S equal to the set of all sj , span these exact Krylov subspaces, as long as none
of the sj is a pole of H and (S,L) is controllable. It is a well observed fact that the low rank of the
right hand sides often transfers to a low (numerical) rank of the solutions X and Y . This is especially
true when many interpolation points are used, i.e. S gets large. Our solvers aim to exploit this fact to
automatically decide about the reduced orders after massive oversampling.
When H additionally depends on parameters, i.e. there are parameter dependencies in E, A, B, or
C, we derive tensor versions of (2), (3) and suggest low-rank tensor solvers to compute the truncation
matrices.
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