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Discontinuous Galerkin (DG) finite element methods have enjoyed considerable success as a flexible and
robust technique for the numerical solution of partial differential equations [3]. One of the advantageous
features of DG methods is its element-locality and weak element-to-element coupling, which allow
for straightforward adaptive refinement, given an error estimator. The discontinuous nature of the
DG polynomial spaces in which the numerical solution is sought additionally provide a natural error
estimator, the so-called non-conformity (NCF) indicator [5]. The NCF estimator is based on the
assumption that the exact solution is physically continuous, implying that jumps in the numerical
solution can be seen as a measure of error. However, despite the generality of this estimator, it
is unable to take into account temporal or non-local patterns and remains a relatively uninformed
heuristic. On the other hand, deep reinforcement learning provides a very general framework for
learning action policies in complicated settings by rewarding good strategies and penalizing undesirable
ones through trial and error [1]. Recent work to incorporate deep learning into finite element methods
is in its infancy, and has focused on either on only classical continuous Galerkin schemes or on other
aspects of DG-FEM unrelated to adaptive refinement [6, 2, 4]. We investigate the application of deep
reinforcement learning as an approach to augment or replace the state-of-the-art error estimators such
as the NCF and heuristic adaptive refinement strategies. We demonstrate the methodology on test
cases in computational physics.
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