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Conventional reduced order models (ROMs) anchored to the assumption of modal linear superim-
position, such as proper orthogonal decomposition (POD), may reveal inefficient when dealing with
nonlinear time-dependent parametrized PDEs, especially for problems featuring coherent structures
propagating over time. To enhance ROM efficiency, we propose a nonlinear approach to set ROMs
by exploiting deep learning (DL) algorithms, such as convolutional neural networks. In the resulting
DL-ROM [2, 5], both the nonlinear trial manifold and the nonlinear reduced dynamics are learned in a
non-intrusive way by relying on DL algorithms trained on a set of full order model (FOM) snapshots,
obtained for different parameter values. Performing then a former dimensionality reduction on FOM
snapshots through POD enables, when dealing with large-scale FOMs, to speedup training times, and
decrease the network complexity, substantially [4].
A further step has led us to introduce LSTM neural networks instead of convolutional autoencoders,
thus obtaining the µt-POD-LSTM-ROM technique that better grasps the time evolution of the PDE
system [1]. This framework allows us to perform extrapolation of the PDE solution forward in time,
that is, on a (much) larger time domain than the one used to train the neural network, for unseen
values of the input parameters - a task often missed by traditional projection-based ROMs. Accuracy
and efficiency of the resulting µt-POD-LSTM-ROM are assessed on several examples, ranging from
low-dimensional, nonperiodic systems to applications in structural mechanics dealing with MEMS [3],
obtaining faster than real-time simulations that are able to preserve a remarkable accuracy.
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