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Complex dynamical systems are used for predictions in many domains. Because of computational
costs, models are truncated, coarsened, or aggregated. As the neglected and unresolved terms become
important, the utility of model predictions diminishes. In our recently published work [1], we developed
a novel neural delay differential equations (nDDEs) based framework to learn closure parameterizations
for known-physics/low-fidelity models using data from high-fidelity simulations or high-resolution data,
and increase the long-term predictive capabilities of the original models. The need for the time-delays in
these neural closure models is rooted in the presence of inherent delays in real-world systems and justi-
fied by the Mori-Zwanzig formulation. In the present study, we develop the unified neural partial delay
differential equations (nPDDEs) theory which augments low-fidelity models in their partial differential
equation (PDE) forms with both Markovian and non-Markovian closure parameterized with neural
networks (NNs). The amalgamation of low-fidelity model and NNs in the continuous spatio-temporal
space followed with numerical discretization, automatically allows for generalizability to computational
grid resolution, boundary conditions, initial conditions, and provide interpretability. We provide ad-
joint PDE derivations in the continuous form, thus allowing one to implement across differentiable
and non-differentiable computational physics codes, different machine learning frameworks, and also
allowing for nonuniformly-spaced spatio-temporal training data. We demonstrate the ability of our
new framework to discriminate and learn model ambiguity in the advecting shock problem governed
by the KdV-Burgers PDE and a biogeochemical-physical ocean acidification model in an interpretable
fashion. We also learn the subgrid-scale processes and augment model simplification in those models,
respectively. Finally, we analyze computational advantages associated with our new framework.
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